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Abstract

Gene expression microarray is a rapidly maturing technology that provides the opportunity to assay the expression levels of thousands
or tens of thousands of genes in a single experiment. We present a new heuristic to select relevant gene subsets in order to further use
them for the classification task. Our method is based on the statistical significance of adding a gene from a ranked-list to the final subset.
The efficiency and effectiveness of our technique is demonstrated through extensive comparisons with other representative heuristics. Our
approach shows an excellent performance, not only at identifying relevant genes, but also with respect to the computational cost.
© 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

All cells have a nucleus, and inside nucleus there is DNA,
which encodes the “program” for making future organisms.
DNA has coding and non-coding segments, and coding
segments, called “genes”, specify the structure of proteins,
which are large molecules, like hemoglobin, that do the
essential work in every organism. Practically all cells in the
same organism have the same genes, but these genes can be
expressed differently at different times and under different
conditions. Genes make proteins in two steps. First, DNA is
transcribed into messenger RNA or mRNA, which in turn
is translated into proteins (see [1] for a review). In recent
years there has been an explosion in the rate of acquisition
of biomedical data. Advances in molecular genetics tech-
nologies, such as DNA microarrays allow us for the first
time to obtain a “global” view of the cell.

Analysis of microarray data presents unprecedented op-
portunities and challenges for data mining in areas such as
gene clustering [2], sample clustering and class discovery
[2,3], sample classification [3,4] and gene selection [5-9].

* Corresponding author. Tel.: +34 954553867, fax: +34954557139.
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In this work, we address the gene selection issue under a
classification framework. The aim is to build a classifier that
accurately predicts the classes (diseases or phenotypes) of
new unlabeled samples. Three well-known machine learning
classifiers (naive Bayes, instance-based and decision trees),
with completely different approaches to learning, are ap-
plied to perform the class prediction. A typical data set may
contain thousands of genes but only a small number of sam-
ples (often less than 200). Theoretically, having more genes
should give us more discriminating power. However, this can
cause several problems: increase computational complexity
and cost; too many redundant or irrelevant genes; and esti-
mation degradation in the classification error. In addition to
reducing noise and improving the accuracy of classification,
the selected subsets of genes may have important biological
interpretation and may be used for drug target discovery or
identifying future possible research directions.

The problem of feature selection received a thorough
treatment in pattern recognition and machine learning. Most
of the feature selection algorithms approach the task as a
search problem, where each state in the search specifies a
distinct subset of the possible attributes [10]. The search pro-
cedure is combined with a criterion in order to evaluate the
merit of each candidate subset of attributes. There are a lot of

0031-3203/$30.00 © 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.patcog.2005.11.001


http://www.elsevier.com/locate/patcog
mailto:rruiz@lsi.us.es

2 R. Ruiz et al. / Pattern Recognition 111 (1111) 11111

possible combinations between each procedure search and
each attribute measure [11]. However, search methods can
be prohibitively expensive in high-dimensional data sets, es-
pecially when a data mining algorithm is applied as evalu-
ation function.

There are various ways in which feature selection al-
gorithms can be grouped according to the attribute eval-
uation measure: depending on the type (filter or wrapper
techniques) or on the way the features are evaluated (indi-
vidual or subset evaluation). The filter model relies on gen-
eral characteristics of the data to evaluate and select gene
subsets without involving any mining algorithm. The wrap-
per model requires one predetermined mining algorithm and
uses its performance as the evaluation criterion. It searches
for features better suited to the mining algorithm, aiming
to improve mining performance, but it also is more com-
putationally expensive [12,13] than filter models. Feature
ranking (FR), also called feature weighting [10,14], assesses
individual features and assigns them weights according to
their degrees of relevance, while the feature subset selection
(FSS) evaluates the goodness of each found feature subset.
(Unusually, some search strategies in combination with sub-
set evaluation can provide a ranked list).

In order to compare the effectiveness of gene selection,
gene sets chosen by each technique are tested with three
well-known learning algorithms: a probabilistic learner
(naive Bayes), an instance-based learner (IB1) and a de-
cision tree learner (C4.5). These three algorithms have
been chosen because they represent three quite different
approaches to learning, and their long standing tradition
in classification studies. The comparison is performed in
four DNA microarray data sets involved in diagnosis of
cancer (colon, leukemia, lymphoma and global cancer map
(GCM)).

The paper is organized as follows. In the next two sec-
tions, we will review previous work, and notions of fea-
ture relevance and redundancy, respectively. In Section 4,
we will present our proposed measures of gene relevance
and redundancy using a wrapper approach, and our algo-
rithm is described. Experimental results are shown in Section
5, and the most interesting conclusions are summarized in
Section 6.

2. Related work

Traditional gene selection methods often select the top-
ranked genes according to their individual discriminative
power [3]. This approach is efficient for high-dimensional
data due to its linear time complexity in terms of dimen-
sionality. They can only capture the relevance of genes to
the target concept, but cannot discover redundancy and ba-
sic interactions among genes. In the FSS algorithms cat-
egory, candidate gene subsets are generated based on a
certain search strategy. Different algorithms address these
issues distinctively. In [11], a great number of selection

methods are categorized. We found different search strate-
gies, namely exhaustive, heuristic and random search, com-
bined with several types of measures to form different al-
gorithms. The time complexity is exponential in terms of
data dimensionality for exhaustive search and quadratic for
heuristic search. The complexity can be linear to the num-
ber of iterations in a random search, but experiments show
that in order to find the best feature subset, the number of it-
erations required is usually at least quadratic to the number
of features [15]. The most popular search methods in pat-
tern recognition and machine learning cannot be applied to
these gene expression data sets due to the large number of
genes (sometimes tens of thousands). One of the few used
search techniques in these domains is sequential forward
(SF, also called hill-climbing or greedy search). Different
subset evaluation measures in combination with SF search
engine can be found. We are specially interested in wrapper
approach [6,16].

A key issue of wrapper method is how to search into the
space of subsets of genes. Although several heuristic search
strategies such as greedy sequential search, best-first search,
and genetic algorithm exist, most of them are still compu-
tationally expensive O(N?) (N being the number of genes
of the original data set), which prevents them from scaling
well to data sets containing thousands of genes. A rough es-
timate of the time required by most of these techniques is in
the order of thousands of hours, assuming that the method
does not get caught in a local minima first and stops pre-
maturely. For example, if we have chosen 50 genes from
20000 (0.0025% of the whole set) through a greedy search,
the subset evaluator would be run approximately one mil-
lion times (N times to find the best single gene, then tries
each of the remaining genes in conjunction with the best to
find the most suited pair of genes N — 1 times, and so on,
more or less 20000 x 50). Assuming 4 s on average by each
evaluation, the results would take more than 1000 h.

The limitations of both approaches, FR and FSS, clearly
suggest that we should pursue a hybrid model. Recently, a
new framework of feature (gene) selection has been used,
where several above-mentioned approaches are combined.
Yu and Liu [17] proposed a fast correlation-based filter al-
gorithm (FCBF) which used correlation measure to obtain
relevant genes and to remove redundancy. There are other
methods based on relevance and redundancy concepts. Re-
cursive feature elimination (RFE) is a proposed feature se-
lection algorithm described by Guyon et al. [8]. The method,
given that one wishes to find only r dimensions in the fi-
nal subset, works by trying to choose the r features which
lead to the largest margin of class separation, using an SVM
classifier. This combinatorial problem is solved in a greedy
fashion at each iteration of training by removing the input
dimension that decreases the margin the least until only r
input dimensions remain (this is known as backward selec-
tion). Ding and Peng [5] have used mutual information for
gene selection that has maximum relevance with minimal
redundancy by solving a simple two-objective optimization.
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Xing et al. [9] proposed a hybrid of filter and wrapper ap-
proaches to feature selection.

In [18], a rank search method is proposed to compare
feature selection algorithms. Rank search techniques rank all
genes, and subsets of increasing size are evaluated from the
ranked list (i.e., the first attribute, the two first ones, etc.). The
best attribute set is reported. The authors apply the wrapper
approach to data sets up to 300 attributes and state that for
the ADS data set (1500 attributes) the estimated time to only
generate the ranking in a machine with 1.4 GHz processor
would be about 140 days and to evaluate the ranked list of
attributes would take about 40 days. In contrast, our method
can be tested on data sets with 20000 genes in a similar
machine in a few hours.

This paper presents a new gene selection method, based
on the hybrid model, and attempts to take advantage of all
of the different approaches by exploiting their best perfor-
mances in two steps: first, a filter or wrapper approach pro-
vides a ranked list of genes, and second, ordered genes are
added using a wrapper subset evaluation ensuring good per-
formance (the search algorithm is valid for any gene ranked-
list). This approach provides the possibility of efficiently
applying wrapper model in high-dimensional domains, ob-
taining better results than the filter model. The final subset
is obviously not the optimum, but it is unfeasible to search
for every possible subset of genes through the search space.
The main goal of our research is to obtain a few features
with high predictive power.

3. Preliminary concepts
3.1. Relevance

The purpose of a feature subset algorithm is to identify
relevant features according to a definition of relevance. How-
ever, the notion of relevance in machine learning has not
yet been rigorously defined in common agreement [19]. Ko-
havi and John [13] include three disjointed categories of fea-
ture relevance: strong relevance, weak relevance and irrele-
vance. These groups are important to decide what features
should be conserved and which ones can be eliminated. The
strongly relevant features are, in theory, important to main-
tain a structure in the domain, and they should be conserved
by any feature selection algorithm in order to avoid the ad-
dition of ambiguity to the sample. Weakly relevant features
could be important or not, depending on the other features
already selected and on the evaluation measure that has been
chosen (accuracy, simplicity, consistency, etc.). Irrelevant at-
tributes are not necessary at all. Bell and Wang [19] make
use of information theory concepts to define the entropic
or variable relevance of a feature with respect to the class.
Blum and Langley [10] collect several relevance definitions.
The above notions of relevance are independent of the spe-
cific learning algorithm being used. There is no guarantee
that just because a feature is relevant, it will necessarily be

useful to an algorithm (or vice versa). The definition of in-
cremental relevance by Caruana and Freitag [20] makes it
explicit, being considered especially suited to obtain a pre-
dictive feature subset.

Definition 1 (Incremental usefulness). Given a sample of
data D, a learning algorithm L, and a feature subset F, the
feature x; is incrementally useful to L with respect to F if the
accuracy of the hypothesis that L produces using the group
of features {x;} U F is better than the accuracy achieved
using just the subset of features F.

We consider this definition to be especially suited to obtain
a predictive feature subset. In the next section, concepts can
be applied to avoid a subset which contains attributes with
the same information.

3.2. Redundancy

Notions of feature redundancy are normally in terms of
feature correlation. It is widely accepted that two features
are redundant to each other if their values are completely
correlated. There are two widely used types of measures
for the correlation between two variables: linear and non-
linear. In the first case, the Pearson correlation coefficient
is used, and in the second one, many measures are based
on the concept of entropy, or measure of the uncertainty
of a random variable. Symmetrical uncertainty is frequently
used, defined as

SU(X,Y):2|: fotY) }

H(X)+ H(Y)

where H(X) = —); P(x;)log,(P(x;)) is the entropy of a
variable X and IG(X|Y)=H (X)— H (XY) is the information
gain from X provided by Y.

The above-mentioned definitions are between pairs of
variables. However, it may not be as straightforward in de-
termining feature redundancy when one is correlated with
a set of features. Koller and Sahami [21] apply a technique
based on cross-entropy, named Markov blanket filtering, to
eliminate redundant features. This idea is formalized in the
following definition.

Definition 2 (Markov blanket). Given a feature x; € F (a
set of attributes) and the class C, the subset M C F(x; ¢ M)
is a Markov blanket of x; if, given M, x; is conditionally
independent of F — M — {x;} and C.

Two attributes (or set of attributes) X, Y are said to be
conditionally independent given a third attribute Z (or set)
if, given Z makes X and Y independent, i.e., the distribution
of X, known Y and Z, is equal to the distribution X known
Z, therefore, Y does not have influence on X (P(X|Y, Z) =
P(X|2)).

Theoretically, it can be shown that once we find a Markov
blanket M of feature x; in a feature set F, we can safely
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remove x; from F without increasing the divergence from the
original distribution. Furthermore, in a sequential filtering
process, in which unnecessary features are removed one by
one, a feature tagged as unnecessary based on the existence
of a Markov blanket M remains unnecessary in later stages
when more features have been removed. The Markov blanket
condition requires that M assumes not only the information
that x; has about C, but also about all the other features. In
[21] it is stated that the cardinality of set M must be small
and fixed.

Xing et al. [9] and Yu and Liu [17] are among the most
cited works at present following the above-mentioned frame-
work (FR + FSS). Both of them are based on this concept
of Markov blanket. In the first one, the number of attributes
of M are not provided, but it is a fixed number among the
highly correlated features. In the second one, a FCBF is im-
plemented, where M is formed by only one attribute, and
gradually eliminates redundant attributes with respect to M
from the first to the final attribute of an ordered list. Other
methods based on relevance and redundancy concepts can
be found in [5,8].

4. Incremental performance of wrapper-search over
ranking

In this section, we first introduce our ideas of relevance
and redundancy taking into account the aim of applying a
wrapper model to gene expression data sets, and then our
approach is described.

As previously indicated, the wrapper model makes use of
the algorithm that will build the final classifier to select a
gene subset. Thus, given a classifier L, and given a set of
genes G, a wrapper method searches in the space of G, using
cross-validation to compare the performance of the trained
classifier L on each tested subset. While the wrapper model is
more computationally expensive than the filter model, it also
tends to find gene sets better suited to the inductive biases
of the learning algorithm and therefore provides superior
performance.

In this work, we propose a fast search over a minimal part
of the gene space. Beginning with the first gene from the
list ordered by some evaluation criterion, genes are added
one by one to the subset of selected genes only if such
inclusion improves the classifier accuracy. Then, the learning
algorithm of the wrapper approach is always run N (number
of genes) times, usually with a few genes. A gene ranking
algorithm makes use of a scoring function computed from
the values of each gene and the class label. By convention,
we assume that a high score is indicative of a valuable gene
and that we sort genes in decreasing order of this score.
We consider ranking criteria defined for individual genes,
independently of the context of others.

When a ranking of genes is provided from a high-
dimensional data set, a large number of genes with similar
scores is generated, and a common criticism is that it leads

to the selection of redundant subsets. However, according
to Guyon and Elisseeff [14], noise reduction and conse-
quently, better class separation may be obtained by adding
variables that are presumably redundant. Moreover, a very
high attribute correlation (in absolute value) does not mean
absence of attribute complementarity. Therefore, our idea of
redundancy is not based on correlation measures, but on the
learning algorithm target (wrapper approach), in the sense
that a gene is chosen if additional information is gained by
adding it to the selected subset of genes.

4.1. Incremental ranked usefulness

In gene subset selection, it is a fact that two types of genes
are generally perceived as being unnecessary: genes that are
irrelevant to the target concept, and genes that are redundant
given other genes. Our approach is based on the concept of
Markov blanket, which is described in [21]. This idea was
formalized using the notion of conditionally independent at-
tribute, which can be defined by several approaches [9,17].
We set this concept by a wrapper model, defining incremen-
tal ranked usefulness in order to devise an approach to ex-
plicitly identify relevant genes and do not take into account
redundant genes.

Let D be a sample of labeled data; G be a subset of
genes of D; and L be a learning algorithm; correct rate (or
accuracy) I'(D/G, L) is the ratio between the number of
instances correctly classified by L and the total number of
instances of D considering only the subset G.

Let R ={g;},i =1...N be aranking of all the genes in
D sorted in descending order, and G be named the subset of
the i first genes of R.

Definition 3 (Incremental ranked usefulness). The gene
gi+1 in R is incrementally useful to L if it is not condi-
tionally independent of the class C given G, therefore the
correct rate of the hypothesis that L produces using the
group of genes {g;1+1} U G is significantly better (denoted
by >) than the correct rate achieved using just the subset of
genes G.

Therefore, if I'(D/G U {gi+1}, L) I'(D/G, L), then
gi+1 1s conditionally independent of class C given the subset
G, then we should be able to omit g; 1 without compromis-
ing the accuracy of class prediction.

A fundamental question in the previous definition is how
the significant improvement is analyzed. A five-fold cross-
validation is used to estimate if the accuracy of the learning
scheme for a set of genes is significantly better (>) than the
accuracy obtained for another set. We conducted a Student’s
paired two-tailed r-test in order to evaluate the statistical
significance (at 0.1 level) of the difference between the
previous best subset and the candidate subset. This last def-
inition allows us to select genes from the ranking, but only
those that increase the classification rate significantly. Al-
though the size of the sample is small (five-folds), our search
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Input: D training U-measure, L-classifier
Output: BestSubset
list R = {}

1
2 for each gene g; € D

3 Score = compute(g;, U, D)

4 append g; to R according to Score

(2l

BestClassif = 0
BestSubset = ()
7 fori=1to N

(=}

o]

TempSubset = BestSubset U {g;} (g; € R)

9 TempClassif = WrapperClassif(TempSubset, L)
10 if (TempClassif > BestClassif)

11 BestSubset = TempSubset

12 BestClassif = TempClassif

Fig. 1. BIRS Algorithm.

method uses a t-test. We want to obtain a heuristic, not to
do an accurate population study. However, on the one hand
it must be noticed that it is a heuristic based on an objective
criterion, to determine the statistical significance degree of
difference between the accuracies of each subset. On the
other hand, the confidence level has been relaxed from 0.05
to 0.1 due to the small size of the sample. Statistically sig-
nificant differences at the p < 0.05 significance level would
not allow us to add more features, because it would be diffi-
cult for the test to obtain significant differences between the
accuracy of each subset. Obviously, if the confidence level
is increased, more genes can be selected, and vice versa.

4.2. Algorithm

There are two phases in the algorithm, named BIRS (best
incremental ranked subset), shown in Fig. 1: firstly, the genes
are ranked according to some evaluation measure (lines 1-4).
In the second phase, we deal with the list of genes once,
crossing the ranking from the beginning to the last ranked
gene (lines 5—12). We obtain the classification accuracy with
the first gene in the list (line 9) and it is marked as selected
(lines 10-12). We obtain the classification rate again with the
first and second genes. The second will be marked as selected
depending on whether the accuracy obtained is significantly
better (line 10). Repeat the process until the last gene on
the ranked list is reached. Finally, the algorithm returns the
best subset found, and we can state that it will not contain
irrelevant or redundant genes.

The first part of the above algorithm is efficient since
it requires only the computation of N scores and sorting
them, while in the second part, time complexity depends on
the learning algorithm chosen. It is worth to note that the

Table 1
Example of gene selection process by BIRS

Rank g5 g7 g4 g3 g1 8 & & 89

Subset Evaluated Acc. p-val Acc.-best sub
1 85 80 80 g5

2 g5, 87 82

3 esg 81

4 85,83 83

5 g5, g1 84 <0.1 84 g5,81

6 85,81, 88 84

7 g5, 21, 86 86

8 85,81, 82 89 <0.1 89 gs.21.2
9 g5, 21, 82, &9 87

learning algorithm is run N (number of genes) times with a
small number of genes, only the selected ones. Therefore, the
running time of the ranking procedure can be considered as
negligible regarding the global process of selection. In fact,
the results obtained from a random order of genes (without
previous ranking) showed the following drawbacks: (1) the
solution was not deterministic; (2) greater number of genes
were selected; (3) the computational cost was higher because
the classifier used in the evaluation contains more genes
since the first iterations.

Consider the situation depicted in Table 1: an example
of the gene selection process done by BIRS. The first line
shows the genes ranked according to some evaluation mea-
sure. We obtain the classification accuracy with the first gene
in the list (g5 : 80%). In the second step, we run the classi-
fier with the first two genes of the ranking (g5, g7 : 82%),
and a paired r-test is performed to determine the statisti-
cal significance degree of the differences. Since it is greater
than 0.1, g7 is not selected. The same happens with the next
two subsets (gs, g4 : 81%, gs, g3 : 83%). Later, the gene
g1 is added, because the accuracy obtained is significantly
better than that with only gs (g5, g1 : 84%), and so on.
In short, the classifier is run nine times to select, or not,
the ranked genes (gs, g1, &2 : 89%): once with only one
gene, four times with two genes, three with three genes and
once with four genes. Most of the time, the learning algo-
rithm is run with few genes. In short, this wrapper-based
approach needs much less time than others with a broad
search engine.

As we can see in the algorithm, the first gene is always
selected. This does not mean a great shortcoming in high-
dimensional databases, because usually several different sets
of genes share similar information. The main disadvantage
of sequential forward generation is that it is not possible to
consider certain basic interactions among genes, i.e., genes
that are useless by themselves can be useful together. Back-
ward generation remedies some problems although there
still will be many hidden interactions (in the sense of being
unobtainable), but it demands more computational resources
than the forward approach. The computer-load necessities
of the forward search might become very inefficient in
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high-dimensional domains, as it starts with the original set
of attributes and removes genes increasingly.

5. Experimental results

The aim of this section is to evaluate our approach in
terms of classification accuracy, degree of dimensionality
and speed in selecting genes, in order to see how good BIRS
is in situations where there is a large number of genes. Four
public microarray data sets were used to assess the perfor-
mance of the algorithm.

Colon cancer data set: This data set is a collection of ex-
pression measurements from colon biopsy samples reported
by Alon et al. [2]. The data set consists of 62 samples of
colon epithelial cells. These samples were collected from
colon cancer patients. The “tumor” biopsies were collected
from tumors, and the “normal” biopsies were collected from
healthy parts of the colons of the same patients. The final
assignments of the status of biopsy samples were made by
pathological examination. Gene expression levels in these 62
samples were measured using high-density oligonucleotide
arrays. Of the &~ 6000 genes represented in these arrays,
2000 genes were selected based on the confidence of the
measured expression levels.

Leukemia data set: This data set is a collection of expres-
sion measurements reported by Golub et al. [3]. The data
set contains 72 samples. These samples are divided into two
variants of leukemia: 25 samples of acute myeloid leukemia
(AML) and 47 samples of acute lymphoblastic leukemia
(ALL). The source of the gene expression measurements
was taken from 63 bone marrow samples and 9 peripheral
blood samples. Gene expression levels in these 72 samples
were measured using high-density oligonucleotide microar-
rays. The expression levels of 7129 genes are reported.

Lymphoma data set: This data set is a collection of expres-
sion measurements reported by Alizadeh et al. [4]. The data
comprise 96 samples described by the expression values of
4026 genes. There are nine different subtypes of lymphoma.

GCM data set: This data set is a collection of expression
measurements reported by Ramaswamy et al. [22]. The data
set contains 190 samples. These samples are divided to 14
variants of tumor. The expression levels of 16 063 genes are
reported.

Colon and leukemia are broadly studied, but not lym-
phoma and GCM, perhaps due to their difficulties at classi-
fication tasks.

We chose three different learning algorithms, C4.5, IB1
and Nai“ve Bayes, to evaluate the accuracy of selected genes
for each gene selection algorithm.

As already mentioned, the proposed search was done over
a ranking of genes, and any evaluation measure could be
used for it. In the experiments, we used two criteria: one be-
longs to the wrapper model, and other to the filter model. In
the wrapper approach, denoted by BIRSy, we order genes
according to their individual predictive power, using as

criterion the performance of the target classifier built with
a single gene. In the filter approach, a ranking is provided
using a non-linear correlation measure. We chose symmet-
rical uncertainty (denoted by BIRSF), based on entropy and
information gain concepts.

Due to the high dimensionality of data, we limited our
comparison to SF techniques and FCBF algorithm [17].
We chose three representative subset evaluation measures in
combination with SF search engine. One, denoted by SFw,
uses a target learning algorithm to estimate the worth of gene
subsets; the other two are subset search algorithms which
exploit SF search and use correlation measures (variation
of CFS, correlation-based feature selection algorithm [23])
or consistency measure (variation of FOCUS [24]) to guide
the search, denoted by CFSsr and FOCUSsF, respectively
(both of them used in [17]).

The experiments were conducted using the WEKA’s im-
plementation of all these existing algorithms and our algo-
rithm is also implemented in the WEKA environment [25].
We must take into account that the proper way to conduct
a cross-validation for feature selection is to avoid using a
fixed set of features selected with the whole training data
set, because this induces a bias in the results. Instead, one
should withhold a pattern, select features, and assess the
performance of the classifier with the selected features us-
ing the left out examples. The results reported in this sec-
tion were obtained with a 10-fold cross-validation over each
data set, i.e. a feature subset was selected using the 90%
of the instances, then, the accuracy of this subset was es-
timated over the unseen 10% of the data. This was per-
formed 10 times, each time proposing a possible different
feature subset. In this way, estimated accuracies, selected at-
tribute numbers and time needed were the result of a mean
over 10 cross-validation samples. Ambroise and McLach-
lan [26] recommend to use 10-fold rather than leave-one-
out cross-validation, because the last one can be highly
variable. Standard methods have been used for the experi-
mental section (SF; Naive Bayes, IB1 and C4.5 classifiers;
and the 7-Student statistical test). There exist other methods
following the wrapper approach to extract relevant genes,
which involve the selection process into the learning process
(neural networks, Bayesian networks, support vector ma-
chines), although the source code of these methods is not
freely available and therefore the experiments cannot be re-
produced. In fact, some of them are designed for specific
tasks, so the parameter setting is quite different for the learn-
ing algorithm.

Table 2 shows the results obtained with the two BIRS ap-
proaches. Tables 3-5, report accuracy and number of genes
selected by Nair've Bayes, IB1 and C4.5, respectively, by
each gene selection algorithm and the original set. We con-
ducted a Student’s paired two-tailed #-test in order to evalu-
ate the statistical significance of the difference between two
averaged accuracy values: one resulted from BIRSy and the
other resulted from one of BIRSr, SFw, CFSsr, FOCUSsF,
FCBF and the original set. The symbols “4” and “—”,
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Table 2

BIRS accuracy of Naive Bayes (NB), IB1 (IB) and C4.5 (C4) on selected genes

Data Colon Leukemia Lymphoma GCM

Classif. Rank Acc. #e Acc. #g Acc. #g Acc. #e

NB BIRSw 85.48 3.50 93.04 2.50 82.14 10.30 67.37 44.00
BIRS 85.48 7.40 93.04 2.80 76.11 9.80 65.26 40.90

1B BIRSw 79.76 6.30 93.04 3.30 85.56 16.40 58.95 37.00
BIRSF 79.05 7.60 88.75 4.20 83.44 19.60 60.00 33.10

C4 BIRSw 83.81 2.90 88.57 1.20 80.00 8.80 46.84 9.80
BIRS 83.81 2.90 84.64 1.10 81.33 6.60 44.21 24.80

Acc. records 1 x 10CV classification rate (%) and #g records the number of genes selected by each algorithm. Rank indicates if the classifier is using a
wrapper () or a filter ranking (r).

Table 3
Accuracy of Naive Bayes on selected genes

Data Colon Leukemia Lymphoma GCM

Algorithm Acc. #g Acc. #g Acc. #g Acc. #g
BIRSy 85.48 3.50 93.04 2.50 82.14 10.30 67.37 44.00
SFw 84.05 5.90 87.32 3.20 83.56 7.10 N/A

CFSsF 82.62 22.10 91.43 40.30 75.11 153.22 N/A
FOCUSgsF 77.14 4.60 84.827 2.40 70.07 3.90 56.84 12.20
FCBF 77.62 14.60 95.89 45.80 78.22 290.90 68.95 60.90
Original 53.337 98.57 75.11 65.79

Acc. records 1 x 10CV accuracy rate (%) and #g records the number of genes selected by each algorithm. N/A—not available.

Table 4
Accuracy of IB1 on selected genes

Alg. Colon Leukemia Lymphoma GCM
Acc. #g Acc. #g Acc. #g Acc. #g

BIRSy 79.76 6.30 93.04 3.30 85.56 16.40 58.95 37.00
SFyw 66.67" 4.80 88.93 2.30 80.11 8.40 N/A

CFSsF 80.71 22.10 90.18 40.30 92.78 153.22 N/A
FOCUSsF 69.29 4.60 81.96™ 2.40 61.22~ 3.90 46.84~ 12.20
FCBF 80.71 14.60 94.46 45.80 91.89 290.90 61.05 60.90
Original 77.62 86.25 84.33 57.37

Acc. records 1 x 10CV accuracy rate (%) and #g records the number of genes selected by each algorithm. N/A—not available.

Table 5
Accuracy of C4.5 on selected genes

Alg. Colon Leukemia Lymphoma GCM

Acc. #g Acc. #g Acc. #g Acc. #g
BIRSy 83.81 2.90 88.57 1.20 80.00 8.80 46.84 9.80
SFw 80.71 3.30 87.32 1.60 73.00 8.20 N/A
CFSsF 86.90 22.10 84.82 40.30 79.22 153.22 N/A
FOCUSsF 79.05 4.60 88.93 2.40 62.44~ 3.90 49.47 12.20
FCBF 88.33 14.60 83.21 45.80 78.22 290.90 52.63 60.90
Original 82.14 82.14 81.44 60.00

Acc. records 1 x 10CV accuracy rate (%) and #g records the number of genes selected by each algorithm. N/A—not available.
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Table 6
Running time (s) for each gene selection algorithm

Data Classif. BIRSy, BIRS SFy CFSsp FOCUSsp FCBF
Colon NB 27.60 19.89 127.09 13.73 1.40 0.42
IB 42.90 32.98 120.06 13.71 1.39 0.42
c4 56.27 55.07 156.92 13.71 1.40 0.42
Leukemia NB 105.47 71.30 226.12 49833 6.65 1.96
B 145.86 99.26 228.30 498.46 6.63 1.96
c4 165.63 118.78 189.74 498.87 6.66 1.98
Lymphoma NB 309.44 304.58 1357.65 1571.52 579 8.71
B 23575 202.38 1032.81 1571.80 578 8.60
c4 579.95 428.43 4540.74 1570.68 579 8.68
Subtotal 1668.87 1332.68 7979.42 6250.81 41.50 33.14
GCM NB 11060.86 10626.81 N/A 177.33 26.28
B 8669.74 7888.31 N/A 177.39 26.24
c4 32328.50 25624.29 N/A 177.19 26.28
Total 53727.97 45472.08 N/A 573.41 111.95

N/A—not available.

respectively, identify statistic significance, at 0.05 level, wins
or losses over BIRSy .

Before comparing our technique to the others, note the
similarity in Table 2 between the results obtained with the
two approaches of our algorithm, one based on a ranking-
wrapper (BIRSw) and the other on a ranking-filter (BIRSF).
As we can see in Table 2, in all the cases these accu-
racy differences are not statistically significant. The num-
ber of genes selected are similar too, although BIRSF is
a little bit faster than BIRSw because of the time needed
to build the ranking for the wrapper-ranking approach (see
Table 6).

Apart from the previous comparison, we studied the be-
havior of BIRSw in three ways in Tables 3-5: with respect
to a whole set of genes (last row, original); with respect
to another wrapper approach (SFw); and to three filter ap-
proaches (CFSsr, FOCUSsF and FCBF).

Table 6 reports the running time for each gene selection
algorithm, showing three different results for each wrapper
approach, depending on the learning algorithm chosen. Ob-
viously, time needed for filter approaches are approximately
the same in the three cases, because filters do not depend on
the classifier used.

Classification accuracies obtained with our wrapper ap-
proach are not statistically different than those obtained with
the original set of genes, except for colon data set with NB,
where BIRSw wins (see Table 3). We noticed that the num-
ber of selected genes was drastically low with regard to the
original set, retaining 0.0018% of the genes on average for
the three classifier.

5.1. BIRSw versus SFw

No significant statistical differences are shown between
the accuracy of our wrapper approach and the accuracy of

the SF wrapper procedure (SFy), except for colon data set
and IB classifier, where BIRSy wins (Table 4).

On the other hand, the advantage of BIRSy with respect to
the SFw for NB, IB1 and C4.5 is clear. We can observe (see
Table 6) that BIRSy is consistently faster than SFy, because
the wrapper subset evaluation is run less times. For exam-
ple, for lymphoma data set and C4.5 classifier, BIRSw and
SFyw retain 8.80 and 8.20 genes, respectively, on average.
To obtain these subsets the first one evaluated 4026 genes
individually (to generate the ranking) and 4026 subsets,
while the second one evaluated 32 180 subsets (4026 genes+
4025 pairs of genes + - - - + 4019 sets of eight genes). The
time savings of BIRSw became more obvious when the
computer-load necessities of the mining algorithm increased.
In many cases the time savings were in degrees of magni-
tude (leukemia and lymphoma), and we must take into ac-
count that SFy did not report any results on GCM data set
after 1 week running.

These results verify the computational efficiency of in-
cremental search applied by BIRSw over greedy sequential
search used by SFy, with similar number of genes selected
and without significant statistical differences on accuracy.

5.2. BIRSw versus FOCUSgF

With respect to the sequential search combined with con-
sistency measure as subset evaluator (FOCUSsF), classi-
fication accuracies obtained with this filter are lower than
those obtained with BIRSy in five cases for the three clas-
sifier. In this sense, FOCUSgF retains very few genes, and
in all cases, except for two, accuracies obtained with the
original set are greater than those obtained with FOCUSsF.
We noticed that the computer-load necessities of this filter
procedure can be considered as negligible regarding wrap-
per models (Table 6).
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5.3. BIRSw versus CFSsFp

With respect to CFSsr algorithm, where the sequential
search is carried out together with a subset evaluation based
on correlation measure, the error rate produced by our ap-
proach is not significantly different. However, gene subsets
and time needed are not similar. Firstly, for the last data set
(GCM) no results were provided by CFSgr because the pro-
gram ran out of memory after a long period of time due to its
quadratic space complexity. Secondly, considering that gene
subsets provided by filters are not dependent on the classifier
used later and those by wrappers are, CFSgr obtained on av-
erage 22.10, 40.30 and 153.22 genes for colon, leukemia and
lymphoma data sets, respectively, while BIRSy retained 3.5,
2.5 and 10.3 genes for NB classifier, 6.3, 3.3 and 16.4 genes
for IB, and 2.9, 1.2 and 8.8 genes for C4. The time needed
to reduce leukemia and lymphoma data sets by CFSsF is
almost four times the time used by BIRSw. It is certainly
true that CFSsr has problems when data sets have high di-
mensionality.

5.4. BIRSw versus FCBF

Accuracies obtained with FCBF algorithm are very simi-
lar to those obtained with CFSF, but with higher number of
genes and much less time needed. Differences in accuracy
between BIRSw and FCBF are not statistically significant.
However, the number of genes selected by FCBF are much
higher than that of our algorithm. Gene subsets provided by
FCBF are 12 times greater than those provided by BIRS, i.e.
FCBF retains 0.0224% of the genes on average for the four
data sets, while BIRSy retain only 0.0018% of the genes on
average for all data sets and the three classifiers. The com-
putational cost of FCBF is very low (see Table 6).

We used WEKA implementation of the FCBF algorithm
with default values. However, if the threshold by which
genes can be discarded is modified the results obtained
might vary. In Tables 3-5, accuracy obtained on average
with FCBF for all data sets and all classifiers is 79.27%
retaining 0.0224% of the original set of genes. If the thresh-
old is set to 0.25, results obtained are 77.35% of accuracy
with 0.0156% of genes, and if 0.50 is fixed as a threshold,
results are 59.81% and 0.0011%, respectively. This per-
centage of genes retained is similar to the obtained with
our algorithm, 0.0018%, although BIRSw provides a higher
averaged accuracy, 78.74%.

5.5. Biological interpretation

To complete our study, we reduced each data set by
running our gene selection method on the original data
sets. BIRS procedure always choose the top gene of each
ranking, but generally the rest of the genes are not located at
consecutive positions. For colon data set and NB classifier,
BIRS chooses the genes M63391 (human desmin gene),

H25136 (Inositol 1,4,5-trisphosphate-binding protein type 2
receptor), M64231 (human spermidine synthase gene) and
R80427 (C4-dicarboxylate transport sensor protein DCTB)
ranked at positions 1, 127, 159 and 160, respectively.
For IB, H77597 (H. sapiens mRNA for metallothionein),
X12671 (human gene for heterogeneous nuclear ribonu-
cleoprotein (hnRNP) core protein A1) and H24956 (proto-
oncogene tyrosine-protein kinase receptor rate precursor) at
positions 1, 6 and 215, respectively. And J02854 (myosin
regulatory light chain 2), D0O0860 (ribose-phosphate py-
rophosphokinase I) and M26383 (human monocyte-derived
neutrophil-activating protein mRNA) at positions 1, 6 and
1033, respectively, for the C4 classifier. The first gene of
each subset appears in the list of relevant genes detected by
previous studies over these data sets [6,27,28].

Similar behavior appears in the rest of data sets. For
leukemia and NB classifier, BIRS chooses the genes
M84526, M27891, M31523 and M23197 among the top-
20 genes of the ranking and M36652. For IB, M23197,
M27891, M31523 and M11722, all of them among the top-
20. And only one gene, the first (M27891) for C4 classifier.
The first gene of each subset appears in the list of rele-
vant genes detected by previous studies over this data sets
[6,27,28]. For lymphoma and NB classifier, BIRS chooses
three genes among the top-20 genes and five further. For
IB, seven and three respectively. And two genes and six for
C4 classifier (see [29]). Finally, for GCM, BIRS chooses
three, three and five genes for NB, IB and C4, respectively,
among the top-20 genes of the ranking [30,31].

6. Conclusions

The success of many learning schemes, in their attempts
to construct data models, hinges on the reliable identifica-
tion of a small set of highly predictive attributes. Traditional
gene selection methods often select the top-ranked genes ac-
cording to their individual discriminative power. However,
the inclusion of irrelevant, redundant and noisy genes in the
model building process phase can result in poor predictive
performance and increased computation. The most popular
search methods in machine learning cannot be applied to
microarray expression data sets due to the very high dimen-
sionality, especially when a wrapper approach is used as
evaluation function. We use the incremental ranked useful-
ness definition to decide at the same time whether or not a
gene is relevant and non-redundant. The technique extracts
the best non-consecutive genes from the ranking, trying to
statistically avoid the influence of unnecessary genes in fur-
ther classifications.

Our approach, named BIRS, uses a very fast search
through the attribute space and any classifier can be em-
bedded into it as evaluator. Very high-dimensional datasets
take a lot of computational resources when wrappers are
chosen. BIRS reduces the search space complexity as it
works directly on the ranking, transforming the combina-
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torial search of SF into a quadratic search. However, the
evaluation is much less expensive as only a few genes are
selected and therefore the subset evaluation is computation-
ally inexpensive in comparison to other approaches involv-
ing wrapper methodologies. Other techniques, faster than
BIRS, like FCBF, do not perform very well as they evaluate
the relevance over the class individually, and the redun-
dancy between pairs of genes, but they do not consider the
interaction among the genes belonging to the final subset.

The analysis has been conducted on four well-known
microarray gene expression data sets: lymphoma, leukemia,
colon cancer and global cancer map, and all the experiments
have been carried out by using an ten-fold cross-validation
technique.

In short, our technique BIRS chooses a small subset of
genes from the original set (0.0018% on average) with
similar predictive performance to others. For very high-
dimensional datasets, wrapper-based methods might be com-
putationally unfeasible, so BIRS turns out a fast technique
that provides good performance in prediction accuracy.
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